p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.2C22, C2.7C4≀C2, C4⋊C4.1C4, (C2×C4).97D4, C8⋊C4.3C2, C42.C2.1C2, C2.3(C4.10D4), C22.38(C22⋊C4), (C2×C4).11(C2×C4), SmallGroup(64,11)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.2C22
G = < a,b,c,d | a4=b4=1, c2=b, d2=b2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, dbd-1=a2b-1, dcd-1=a-1b2c >
Character table of C42.2C22
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | -i | i | i | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | i | i | -i | -i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | -i | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | -1+i | 1+i | 0 | 0 | -1-i | 1-i | 0 | complex lifted from C4≀C2 |
ρ12 | 2 | -2 | 2 | -2 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 1+i | -1+i | 0 | 0 | 1-i | -1-i | 0 | complex lifted from C4≀C2 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -1-i | 0 | 0 | -1+i | 1+i | 0 | 0 | 1-i | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | -2 | 2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -1+i | 0 | 0 | -1-i | 1-i | 0 | 0 | 1+i | complex lifted from C4≀C2 |
ρ15 | 2 | -2 | 2 | -2 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -1-i | 1-i | 0 | 0 | -1+i | 1+i | 0 | complex lifted from C4≀C2 |
ρ16 | 2 | -2 | -2 | 2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 1-i | 0 | 0 | 1+i | -1+i | 0 | 0 | -1-i | complex lifted from C4≀C2 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 1+i | 0 | 0 | 1-i | -1-i | 0 | 0 | -1+i | complex lifted from C4≀C2 |
ρ18 | 2 | -2 | 2 | -2 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 1-i | -1-i | 0 | 0 | 1+i | -1+i | 0 | complex lifted from C4≀C2 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
(1 31 55 47)(2 28 56 44)(3 25 49 41)(4 30 50 46)(5 27 51 43)(6 32 52 48)(7 29 53 45)(8 26 54 42)(9 57 40 17)(10 62 33 22)(11 59 34 19)(12 64 35 24)(13 61 36 21)(14 58 37 18)(15 63 38 23)(16 60 39 20)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 5 59)(2 12 6 16)(3 21 7 17)(4 33 8 37)(9 41 13 45)(10 54 14 50)(11 31 15 27)(18 46 22 42)(19 55 23 51)(20 28 24 32)(25 36 29 40)(26 58 30 62)(34 47 38 43)(35 52 39 56)(44 64 48 60)(49 61 53 57)
G:=sub<Sym(64)| (1,31,55,47)(2,28,56,44)(3,25,49,41)(4,30,50,46)(5,27,51,43)(6,32,52,48)(7,29,53,45)(8,26,54,42)(9,57,40,17)(10,62,33,22)(11,59,34,19)(12,64,35,24)(13,61,36,21)(14,58,37,18)(15,63,38,23)(16,60,39,20), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,5,59)(2,12,6,16)(3,21,7,17)(4,33,8,37)(9,41,13,45)(10,54,14,50)(11,31,15,27)(18,46,22,42)(19,55,23,51)(20,28,24,32)(25,36,29,40)(26,58,30,62)(34,47,38,43)(35,52,39,56)(44,64,48,60)(49,61,53,57)>;
G:=Group( (1,31,55,47)(2,28,56,44)(3,25,49,41)(4,30,50,46)(5,27,51,43)(6,32,52,48)(7,29,53,45)(8,26,54,42)(9,57,40,17)(10,62,33,22)(11,59,34,19)(12,64,35,24)(13,61,36,21)(14,58,37,18)(15,63,38,23)(16,60,39,20), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,5,59)(2,12,6,16)(3,21,7,17)(4,33,8,37)(9,41,13,45)(10,54,14,50)(11,31,15,27)(18,46,22,42)(19,55,23,51)(20,28,24,32)(25,36,29,40)(26,58,30,62)(34,47,38,43)(35,52,39,56)(44,64,48,60)(49,61,53,57) );
G=PermutationGroup([[(1,31,55,47),(2,28,56,44),(3,25,49,41),(4,30,50,46),(5,27,51,43),(6,32,52,48),(7,29,53,45),(8,26,54,42),(9,57,40,17),(10,62,33,22),(11,59,34,19),(12,64,35,24),(13,61,36,21),(14,58,37,18),(15,63,38,23),(16,60,39,20)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,5,59),(2,12,6,16),(3,21,7,17),(4,33,8,37),(9,41,13,45),(10,54,14,50),(11,31,15,27),(18,46,22,42),(19,55,23,51),(20,28,24,32),(25,36,29,40),(26,58,30,62),(34,47,38,43),(35,52,39,56),(44,64,48,60),(49,61,53,57)]])
C42.2C22 is a maximal subgroup of
C42.2C23 C42.3C23 C42.4C23 C42.6C23 C42.7C23 C42.8C23 C42.9C23 C42.10C23 C10.C4≀C2
C42.D2p: C42.66D4 C42.406D4 C42.408D4 C42.376D4 C42.68D4 C42.69D4 C42.71D4 C42.72D4 ...
C42.2C22 is a maximal quotient of
C4⋊C4⋊C8 C10.C4≀C2
C42.D2p: C42.7Q8 C42.2D6 C42.8D6 C42.2D10 C42.8D10 C42.2D14 C42.8D14 ...
Matrix representation of C42.2C22 ►in GL4(𝔽17) generated by
0 | 13 | 0 | 0 |
13 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
6 | 10 | 0 | 0 |
10 | 6 | 0 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 2 | 0 |
4 | 10 | 0 | 0 |
7 | 13 | 0 | 0 |
0 | 0 | 5 | 12 |
0 | 0 | 12 | 12 |
G:=sub<GL(4,GF(17))| [0,13,0,0,13,0,0,0,0,0,0,16,0,0,1,0],[0,1,0,0,1,0,0,0,0,0,4,0,0,0,0,4],[6,10,0,0,10,6,0,0,0,0,0,2,0,0,2,0],[4,7,0,0,10,13,0,0,0,0,5,12,0,0,12,12] >;
C42.2C22 in GAP, Magma, Sage, TeX
C_4^2._2C_2^2
% in TeX
G:=Group("C4^2.2C2^2");
// GroupNames label
G:=SmallGroup(64,11);
// by ID
G=gap.SmallGroup(64,11);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,2,48,73,103,362,332,158,681,69]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^2=b,d^2=b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=a^-1*b^2*c>;
// generators/relations
Export
Subgroup lattice of C42.2C22 in TeX
Character table of C42.2C22 in TeX